TOTAL LICT DOMINATION IN GRAPHS

M.H. Muddebihal^{*}

<u>Kalshetti. Swati.M*</u>

Abstract: For any graph G, the lict graph $n \ G = J$ of a graph G is the graph whose vertex set is the union of the set of edges and set of cut vertices of G in which two vertices are adjacent if and only if corresponding members are adjacent or incident. A set D is a total dominating set, if $N \ D = V$ or equivalently, if for every vertex $v \in V$, there exists a vertex $u \in S, u \neq v$ such that u is adjacent to v. The total domination number γ_i G equals the minimum cardinality of total dominating set of G.A dominating set D' of J is a total dominating set if $N \ J = V[n \ G]$ and the minimum cardinality of D' is total domination number of n G and is denoted by $\gamma_m \ G$. In this paper, many bounds on $\gamma_m \ G$ were obtained in terms of vertices, edges and other different parameters of G but not in terms of elements of J. Further we develop its relation with other different domination parameters.

Subject classification number: AMS-O5C69, 05C70.

Keywords: Lict Graph / Line Graph / Total domination / Dominating set.

A Monthly Double-Blind Peer Reviewed Refereed Open Access International e-Journal - Included in the International Serial Directories Indexed & Listed at: Ulrich's Periodicals Directory ©, U.S.A., Open J-Gage as well as in Cabell's Directories of Publishing Opportunities, U.S.A. International Journal of Engineering & Scientific Research http://www.ijmra.us

^{*} Department of Mathematics Gulbarga University, Gulbarga – 585 106, Karnataka – India

1. Introduction

In this paper, all the graphs considered here are simple, finite, non-trivial, undirected and connected. As usual p and q denote, the number of vertices and edges of a graph G. In this paper, for any undefined terms or notations can be found in Harary

[3].

As usual, the maximum/minimum degree of a vertex in G is denoted by $\Delta G / \delta G$. The degree of an edge e = uv of G is defined as deg e = degu + degv - 2 and $\delta' G \Delta' G = degu + degv - 2$ and degree among the edges of G.

For any real number x, $\lceil x \rceil$ denotes the smallest integer not less than x and |x| denotes the greatest integer not greater than x.

A vertex(edge) cover in a graph G is a set of vertices that covers all the edges (vertices) of G. The vertex(edge) covering number α_0 G (α_1 G) is a minimum cardinality of a vertex (edge) cover in G. The vertex (edge) independence number $\beta_0 \in \beta_1 \in C$ is the maximum cardinality of independent set of vertices

(edges) in G.

A vertex of degree one is called an end vertex and its neighbor is called support vertex. A vertex v of G is called a cutvertex if removing it from G increases the number of components of G.

A subdivision of edge e = uv of a graph G is the replacement of the edge e by a path uvw.The graph obtained from G by subdividing each edge of G exactly once is called the subdivision graph of G and is denoted by S G.

A Monthly Double-Blind Peer Reviewed Refereed Open Access International e-Journal - Included in the International Serial Directories Indexed & Listed at: Ulrich's Periodicals Directory ©, U.S.A., Open J-Gage as well as in Cabell's Directories of Publishing Opportunities, U.S.A. International Journal of Engineering & Scientific Research http://www.ijmra.us

A line graph L G is the graph whose vertices corresponds to the edges of G and two vertices L G are adjacent if and only if the corresponding edges in G are adjacent (that is, are incident with a comman vertex).

We begin by recalling some standard definition from domination theory.

A set *D* of a graph G = V, E is a dominating set if every vertex in V - D is adjacent to some vertex in *D*. The domination number γG of *G* is the minimum cardinality of a minimal dominating set in *G*. The study of domination in graphs was begun by Ore [7] and Berge [1].

A set *F* of edges in a graph G = V, E is called an edge dominating set of *G* if every edge in E - F is adjacent to at least one edge in *F*. The edge domination number $\gamma' G$ of a graph *G* is the minimum cardinality of an edge dominating set in *G*. Edge domination number was studied by S.L. Mitchell and Hedetniemi [6].

A set $D \subseteq V \lceil L \ G \rceil$ is said to be dominating set of $L \ G$, if every vertex not in

D is adjacent to a vertex in *D*. The domination number of *G* is denoted by $\gamma \begin{bmatrix} L & G \end{bmatrix}$ is the minimum cardinality of dominating set.

A set *D* is a total dominating set, if N D = V or equivalently, if for every vertex $v \in V$, there exists a vertex $u \in S, u \neq v$ such that *u* is adjacent to *v*. The total domination number $\gamma_t G$ equals the minimum cardinality of total dominating set of *G*. This concept was introduced by Cockayne, Dawes and Hedetniemi [2]. The concept of domination in graphs with its many variations is now well studied in graph theory. (see [4], [5]).

Analogously, we define total domination number in lict graph as follows.

A Monthly Double-Blind Peer Reviewed Refereed Open Access International e-Journal - Included in the International Serial Directories Indexed & Listed at: Ulrich's Periodicals Directory ©, U.S.A., Open J-Gage as well as in Cabell's Directories of Publishing Opportunities, U.S.A. International Journal of Engineering & Scientific Research http://www.ijmra.us

Volume 4, Issue 1

<u>ISSN: 2347-6532</u>

A dominating set D' of $n \ G = J$ is said to be total dominating set if $N \ D' = V \begin{bmatrix} n \ G \end{bmatrix}$ or equivalently, if for every vertex $v \in V \begin{bmatrix} n \ G \end{bmatrix}$, there exists a vertex $u \in D', u \neq v$ such that u is adjacent to v in $n \ G$. The total domination number of $n \ G$ is denoted by $\gamma_m \ G$ and is the minimum cardinality of a total dominating set in $n \ G$.

In this paper, many bounds on $\gamma_m G$ were obtained in terms of vertices, edges of *G*. Also we establish total domination number of a lict graph *n G* and express the results with other different domination parameters of *G*.

2. RESULTS

Initially we begin with Total domination number of lict graph of some standard graphs, which are straight forward in the following theorem.

Theorem 1:

(i) For any cycle C_p with $p \ge 3$ vertices,

$$\gamma_m \ C_p = \frac{p}{2} \qquad \text{if } p \equiv 0 \mod 4 \quad .$$
$$= \frac{p}{2} + 1 \quad \text{if } p = 6 + 4n, n = 0, 1, 2, 3..., i$$
$$= \left[\frac{p}{2}\right] \qquad \text{if } p \text{ is odd } .$$

(ii) For any bipartite graph K_{p_1,p_2} with $p_1 \le p_2$ vertices,

$$\gamma_m \left[K_{p_1, p_2} \right] = p_1$$

(iii) For any star $K_{1,p}$ with p > 2 vertices,

A Monthly Double-Blind Peer Reviewed Refereed Open Access International e-Journal - Included in the International Serial Directories Indexed & Listed at: Ulrich's Periodicals Directory ©, U.S.A., Open J-Gage as well as in Cabell's Directories of Publishing Opportunities, U.S.A.

International Journal of Engineering & Scientific Research http://www.ijmra.us January 2016

Volume 4, Issue 1

 $\gamma_{tn} \quad K_{1,p} = 2.$

Theorem 2. A total lict dominating set $D' \subseteq V [n \ G]$ is minimal if for each vertex $v \in D'$, one of the following condition holds

<u>SSN: 2347-653</u>

- a) There exists a vertex $u \in V [n \ G] D'$ such that $N \ u \ \cap D' = v$.
- b) v is not an isolated vertex in $\langle D' \rangle$.
- c) $\langle V[n \ G] D' \cup v \rangle$ is connected.

Proof: Suppose D' is a minimal total lict dominating set of G and there exists a vertex $v \in D'$ such that v does not hold only of the above conditions. Then for some vertex w, the set $D_1 = D' \cup w$ forms a total lict dominating set in G by condition a and b. Also by c, $\langle V[n \ G \] - D' \rangle$ is disconnected. This implies that D_1 is total lict dominating set of G, a contradiction.

Conversely suppose $\forall v \in D'$, one of the above statements hold. Further if D is not minimal, then there exists a vertex $v \in D'$ such that D' - v such that u dominates v. That is $u \in N \ v$. Hence v does not satisfy a and b, hence it must satisfy c. Then there exists a vertex $u \in V[n \ G] - D'$ such that $N \ u \cap D' = v$.

Since D' - v is total lict dominating set in *G*, then there exists a vertex $x \in N$ $u \cap D'$ where $x \neq v$, a contradiction to the fact N $u \cap D' = v$.

Clearly D' is a minimal total lict dominating set in G.

Theorem 3 : For any connected p,q graph $G, \gamma_{tn} G \leq \gamma_t G + \delta G$.

A Monthly Double-Blind Peer Reviewed Refereed Open Access International e-Journal - Included in the International Serial Directories Indexed & Listed at: Ulrich's Periodicals Directory ©, U.S.A., Open J-Gage as well as in Cabell's Directories of Publishing Opportunities, U.S.A. International Journal of Engineering & Scientific Research http://www.ijmra.us

Proof: Let $D = v_1, v_2, v_3, \dots, v_n$ be the dominating set of G and V' = V G - D

be the set such that $H \subseteq V'$ with the minimum set of vertices. Suppose $\langle D \rangle$ has no isolates ,then D itself is a dominating set of G consider some $v_i \in H$ such that $\forall v_j \in D, v_i, v_j \in E$ G and $\langle D \cup v \rangle$ has no isolates, then $D \cup v_i$ is a total a dominating set . Hence $|D \cup v_i| = \gamma_t G$. Further consider $E = e_1, e_2, e_3, \dots, e_n$; $C = c_1, c_2, c_3, \dots, c_n$ be the set of edges and cut vertices in G.In lict graph n G, $V[n G] = \begin{bmatrix} E G \cup C G \end{bmatrix}$. By representing each element of E as $H = u_1, u_2, u_3, \dots, u_n$ and $J = u'_1, u'_2, u'_3, \dots, u'_n$ of C. Clearly $V \begin{bmatrix} n & G \end{bmatrix} = H \cup J$. Let $H' \subset H$ and $J' \subset J$ be the set of vertices of $n \in G$ such that $\forall u_i$ and $u'_i \in H' \cup J'$ are adjacent to atleast one vertex of $V [n \ G] - H' \cup J'$ and $\langle H' \cup J' \rangle$ has no isolates then $H' \cup J'$ is a total dominating set of n G. Suppose a vertex $x \in H'$ or $x \in J'$ such that $\langle H' \cup J' - x \rangle$ has an isolates. Then $H' \cup J'$ is a minimal total dominating set of *n* G .Hence $|H' \cup J'| = \gamma_m G$.Since $D \cup v_i$ is a $\gamma_t G$ set, Suppose there exists a vertex v with minimum degree δG . In n G the set is incident to v gives $\delta e \in V[n \ G]$ such that $|H' \cup J'| \leq |D \cup v_i| + \delta v$. Thus $\gamma_{tn} \ G \leq \gamma_t \ G + \delta G$.

Corollary 1: For any graph *G* if ,

(i) $G \cong W_p$, then $\gamma_{tn} W_p \leq \left\lfloor \frac{p}{2} \right\rfloor$.

(ii)
$$G \cong K_{1,p}$$
, $p \ge 2$ then $\gamma_m K_{1,p} = 2$.

Proof: For the condition (i) : If $G \cong W_p$, and $u_1 \in \Delta W_p$. Then deg $u_1 = p - 1$.Let

A Monthly Double-Blind Peer Reviewed Refereed Open Access International e-Journal - Included in the International Serial Directories Indexed & Listed at: Ulrich's Periodicals Directory ©, U.S.A., Open J-Gage as well as in Cabell's Directories of Publishing Opportunities, U.S.A. International Journal of Engineering & Scientific Research http://www.ijmra.us

January 2016

Volume 4, Issue 1

<u>55N: 2347-653</u>

 $D' \in V \left\lceil n \ G \right\rceil$ and is a total dominating set $n \ G$ such that

$$D' = v_1, v_2, v_3, \dots, v_k$$
 if *p* is even

$$= v_1, v_2, v_3, \dots, v_{k-1}$$
 if *p* is odd

Be the total dominating set of $n W_p$. Since the incident edges of u_1 forms a complete

induced subgraph in n G and any two vertices of D' dominates at least four vertices in

n W_p , hence it follows that $|D'| \ge \left\lfloor \frac{p}{2} \right\rfloor$. Thus $\gamma_m W_p \le \left\lfloor \frac{p}{2} \right\rfloor$.

For the condition (ii) : If $G \cong K_{1,p}$, $p \ge 2$. Then in this case $n K_{1,p} \cong K_{1+p}$. Clearly

 $\frac{\gamma_m}{\gamma_m} \left| K_{1,p} \right| = 2 = \gamma_t K_{p+1} .$

The next Theorem gives the lower bound for $\gamma_m G$.

Theorem 4 : For any connected p, q graph G, γ_m $G \leq \left\lfloor \frac{2p}{\Delta G} \right\rfloor$

Proof: Let $E = e_1, e_2, e_3, \dots, e_n$ and $C = c_1, c_2, c_3, \dots, c_n$ be the edge set and cutvertex set of *G* respectively. In *n G*, $V[n G] = E G \cup C G$. We consider the following cases.

Case i : Suppose G is a tree with $p \ge 3$ vertices ,then in n G each block is complete and every cutvertex of n G lies on exactly two blocks. Let

 $C = v_1, v_2, v_3, \dots, v_n$ be the set cutvertices in $n \ G$. Now we consider $C_1 = v_1, v_2, v_3, \dots, v_i$; $1 \le i \le n$ and $C_2 = v_1, v_2, v_3, \dots, v_j$; $1 \le j \le n$ such that

http://www.ijmra.us

A Monthly Double-Blind Peer Reviewed Refereed Open Access International e-Journal - Included in the International Serial Directories Indexed & Listed at: Ulrich's Periodicals Directory ©, U.S.A., Open J-Gage as well as in Cabell's Directories of Publishing Opportunities, U.S.A. International Journal of Engineering & Scientific Research

Volume 4, Issue 1

January 2016

 $C_1, C_2 \subseteq C$. Further $\forall v_k \in N$ C_2 where $\forall v_k \in C_i$, let $H = V \begin{bmatrix} n & G \end{bmatrix} - C_1 \cup C_2$ and $\langle H \rangle$ has

no isolates .Thus $|C_1 \cup C_2| \leq \left\lfloor \frac{2p}{\Delta} \right\rfloor$, which gives $\gamma_m G \leq \left\lfloor \frac{2p}{\Delta G} \right\rfloor$.

Case ii : Suppose G is not a tree, then exists at least one cycle in G. Let e cycle edge in G with maximum edge degree. Now a set $D' = v_1, v_2, v_3, \dots, v_n$ such that $V \lceil n \rceil - D' = D_1, \forall v_1 \in D_1$ is adjacent to at least one vertex of D'. Thus D' is a minimal

dominating set. Suppose $\langle D' \rangle$ has no isolates then $|D'| = \gamma_{tn} \quad G \leq \left\lfloor \frac{2p}{\Delta} \right\rfloor$.

From the above two cases we have $\gamma_{tn} G \leq \left| \frac{2p}{\Delta G} \right|$.

The next Theorem relates γ_m G in terms of vertices and maximum degree of G.

Theorem 5: For any connected p,q graph G with $p \ge 3$ vertices,

 $\gamma_{tn} \quad G \leq P - \Delta \quad G \quad +1.$

Proof: Let v be a vertex of maximum degree in G.Let $V = v_1, v_2, v_3, \dots, v_n$ be the vertex set of G and some $v_i \in C$ G ; $1 \le i \le n$, where C G is the cutvertex set.

Further let *D* be the dominating set of *n G*. Suppose $V_1 = V \begin{bmatrix} n & G \end{bmatrix} - D$ and $D_1 \in N D$ where $V_1 \in N D$ and $D_1 \subseteq V_1$. Then $D \cup D_1$ forms a total dominating set in *n G* which

implies $|D \cup D_1| \leq V \ G - \Delta \ G + 1$.

Clearly $\gamma_{tn} \ G \le P - \Delta \ G + 1$.

The next Theorem relates $\gamma_m \ G$ and $\gamma_t \begin{bmatrix} L \ G \end{bmatrix}$.

A Monthly Double-Blind Peer Reviewed Refereed Open Access International e-Journal - Included in the International Serial Directories Indexed & Listed at: Ulrich's Periodicals Directory ©, U.S.A., Open J-Gage as well as in Cabell's Directories of Publishing Opportunities, U.S.A. International Journal of Engineering & Scientific Research http://www.ijmra.us

January

2016

<u>ISSN: 2347-6532</u>

Theorem 6 : For any non-trivial connected p, q graph $G, \gamma_m \ G \ge \gamma_t \begin{bmatrix} L & G \end{bmatrix}$

Proof: Let D'' be the dominating set of L G and $V_1 = V[L G] - D''$ such that $V_1 \in N D''$. Suppose $D_1 \subseteq V_1$ and $D_1 \in N D''$; then $D'' \cup D_1$ forms a minimal total dominating set set of L G. Further let D be the dominating set of n G and let $D_2 \subseteq V_1$ and $D_2 \in N D$ then $D \cup D_2$ forms a minimal total dominating set of n G. Since $L G \subseteq n G$, then $\forall e_i \in E G = V[L G]; 1 \le i \le n, \forall e_i \cup c_i \in [E G \cup C G] = V[n G]$, which gives $e_i \subseteq e_i \cup c_i, \forall e_i, c_i \in G$. Clearly $D'' \cup D_1 \subseteq D \cup D_2$. Thus $|D'' \cup D_1| \le |D \cup D_2|$. Hence $\gamma_i [L G] \le \gamma_m G$.

In the next Theorem, we obtain the an upper bound for total domination number $n \begin{bmatrix} S & G \end{bmatrix}$.

Theorem 7: For any connected p,q graph $G, \gamma_m \begin{bmatrix} S & G \end{bmatrix} \le 2 p - \beta_1$, where β_1 is the edge independence number G.

Proof: Suppose $B = e_1, e_2, e_3, \dots, e_n$ be the maximum independent set of edges in G such that $|B| = \beta_1$. Then B is an edge dominating set of G. Let w_i be the vertex set of S G which are incident to the edges of B. Further let V' be the set of vertices of G which are incident with any edge of B. If $V' = \phi$, then the corresponding to the edges of B, the vertex set $D' = u_1, u_2, u_3, \dots, u_n$ forms a total dominating set of $n[S \ G \]$, such that $|D'| \le 2B$. Hence $\gamma_m[S \ G \] \le 2 \ p - \beta_1$. Otherwise since B is an edge dominating set of $G, \langle B \rangle$ is independent. Then $D' = u_1, u_2, u_3, \dots, u_k$;

http://www.ijmra.us

A Monthly Double-Blind Peer Reviewed Refereed Open Access International e-Journal - Included in the International Serial Directories Indexed & Listed at: Ulrich's Periodicals Directory ©, U.S.A., Open J-Gage as well as in Cabell's Directories of Publishing Opportunities, U.S.A. International Journal of Engineering & Scientific Research

Volume 4, Issue 1

2016

$$\left|D'\right| \leq 2\beta_1 + 2k = 2\beta_1 + 2 \quad p - 2\beta_1 \quad .$$

Clearly $\gamma_m \left\lceil S \ G \right\rceil \leq 2 \ p - \beta_1$.

Next we obtain the following characterization.

Theorem 8: For any connected p, q graph G, if

i)
$$G \cong K_p$$
 then $\gamma_{in} \left[S \ K_p \right] = 2 \left[\frac{p}{2} \right]$.

(ii)
$$G \cong K_{p_1,p_2}, p_1 \le p_2$$
 then $\gamma_m \left[S \ K_{p_1,p_2} \right] = 2p_2$.

Proof: For (i) suppose $G \cong K_p$, then in this case $|D'| = \left|\frac{p}{2}\right|$, where D' is total dominating set of *n G* by corollary [1], it follows that $\gamma_m \left[S \ K_p \right] \le 2p - 2 \left[\frac{p}{2} \right] = 2 \left[\frac{p}{2} \right]$. For (ii) Let X_1, X_2 be the partition of K_{p_1, p_2} with $|X_1| = p_1$ and $|X_2| = p_2$. By theorem 7, we $\gamma_m \begin{bmatrix} S & G \end{bmatrix} \le 2 \quad p - \beta_1 = 2 \quad p_1 + p_2 \quad -2p_1 = 2p_2$. Further any total dominating set have $n\begin{bmatrix} S & K_{p_1,p_2} \end{bmatrix}$ must contain at least $2p_1$ vertices of X_2 and $2p_2 - p_1$ vertices for dominating the vertices incident with remaining $p_2 - p_1$: $|D'| \ge 2p_1 + 2p_2 - p_1 = 2p_2$ and hence $\gamma_{tn} \left[S \ K_{p_1,p_2} \right] = 2p \, .$

The following theorem relates $\gamma_m G$ and $\gamma' G$.

Theorem 9: For any connected p, q graph G with p > 2 vertices, $\gamma_{tn} G \ge \gamma' G$.

Proof: Let $E = e_1, e_2, e_3, \dots, e_n$ be the edge set of G and $C = c_1, c_2, c_3, \dots, c_n$ be

http://www.ijmra.us

A Monthly Double-Blind Peer Reviewed Refereed Open Access International e-Journal - Included in the International Serial Directories ndexed & Listed at: Ulrich's Periodicals Directory Q. U.S.A., Open J-Gage as well as in Cabell's Directories of Publishing Opportunities, U.S.A. International Journal of Engineering & Scientific Research

the set of cutvertex in G such that $V[n \ G] = E \ G \cup C \ G$. Let $F = e_1, e_2, e_3, \dots, e_i$; $\forall e_i$, where $1 \le i \le n$ be the minimal edge dominating set of G such that $|F| = \gamma' \ G$. Since $E \ G \subseteq V[n \ G]$, then every edge $e_i \in F$; forms a dominating set D' in n G. Suppose $D'' = E \ G \ -F \subseteq V[n \ G]$ and $V_1 = V[n \ G] - D'$ where $V_1 \in N \ D'$ and $D'' \in N \ D'$ such that $D' \cup D''$ forms a minimal total dominating set in n G. Clearly $|F| \subseteq |D' \cup D''|$. Thus $\gamma' \ G \le \gamma_m \ G$.

<u>ISSN: 2347-6532</u>

References

- [1] C.Berge, Theory of graphs and its applications, Methuen London (1962).
- [2] C.J.Cockayne, R.M.Dawes and S.T, Hedetniemi, Total Domination in Graphs, Networks (211-219), 10 (1980)
- [3] F.Harary, Graph theory, Adison Wesley, Reading Mass (1972).
- [4] T.W.Haynes, S.T.Hedetniemi and P.J.Slater ,Domination in graphs,Advanced topics,Marcel Dekker,Inc;New York (1998).
- [5] T.W.Haynes,S.T.Hedetnniemi and P.J Slater,Fundamentals of Domination in Graphs,Marcel Dekker,Inc;New York (1998).
- [6] S.L. Mitchell and S.T. Hedetniemi, Edge domination in trees.In: Proc.8th S.E Conf.on Combinatorics,Graph Theory and Computing,Utilas Mathematica , Winnipeg (489-509),19 (1977).
- [7] O.Ore, Theory of graphs, Amer.Math.Soc., Colloq Publ., 38 Providence (1962).

A Monthly Double-Blind Peer Reviewed Refereed Open Access International e-Journal - Included in the International Serial Directories Indexed & Listed at: Ulrich's Periodicals Directory ©, U.S.A., Open J-Gage as well as in Cabell's Directories of Publishing Opportunities, U.S.A. International Journal of Engineering & Scientific Research http://www.ijmra.us